Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 8 de 8
Фильтр
1.
Tomography ; 9(2): 759-767, 2023 03 31.
Статья в английский | MEDLINE | ID: covidwho-2304190

Реферат

BACKGROUND AND RATIONALE: Novel coronavirus-related disease (COVID-19) has profoundly influenced hospital organization and structures worldwide. In Italy, the Lombardy Region, with almost 17% of the Italian population, rapidly became the most severely affected area since the pandemic beginning. The first and the following COVID-19 surges significantly affected lung cancer diagnosis and subsequent management. Much data have been already published regarding the therapeutic repercussions whereas very few reports have focused on the consequences of the pandemic on diagnostic procedures. METHODS: We, here, would like to analyze data of novel lung cancer diagnosis performed in our Institution in Norther Italy where we faced the earliest and largest outbreaks of COVID-19 in Italy. RESULTS: We discuss, in detail, the strategies developed to perform biopsies and the safe pathways created in emergency settings to protect lung cancer patients in subsequent therapeutic phases. Quite unexpectedly, no significant differences emerged between cases enrolled during the pandemic and those before, and the two populations were homogeneous considering the composition and diagnostic and complication rates. CONCLUSIONS: By pointing out the role of multidisciplinarity in emergency contexts, these data will be of help in the future for designing tailored strategies to manage lung cancer in a real-life setting.


Тема - темы
COVID-19 , Lung Neoplasms , Humans , Biopsy, Fine-Needle/methods , Pandemics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Tomography, X-Ray Computed , COVID-19 Testing
2.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Статья в английский | MEDLINE | ID: covidwho-1363913

Реферат

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Тема - темы
COVID-19/pathology , Interferons/metabolism , Respiratory System/virology , Severity of Illness Index , Age Factors , Aging/pathology , COVID-19/genetics , COVID-19/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interferons/genetics , Leukocytes/pathology , Leukocytes/virology , Lung/pathology , Lung/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Viral Load
3.
Front Immunol ; 12: 663303, 2021.
Статья в английский | MEDLINE | ID: covidwho-1291384

Реферат

The release of neutrophil extracellular traps (NETs), a process termed NETosis, avoids pathogen spread but may cause tissue injury. NETs have been found in severe COVID-19 patients, but their role in disease development is still unknown. The aim of this study is to assess the capacity of NETs to drive epithelial-mesenchymal transition (EMT) of lung epithelial cells and to analyze the involvement of NETs in COVID-19. Bronchoalveolar lavage fluid of severe COVID-19 patients showed high concentration of NETs that correlates with neutrophils count; moreover, the analysis of lung tissues of COVID-19 deceased patients showed a subset of alveolar reactive pneumocytes with a co-expression of epithelial marker and a mesenchymal marker, confirming the induction of EMT mechanism after severe SARS-CoV2 infection. By airway in vitro models, cultivating A549 or 16HBE at air-liquid interface, adding alveolar macrophages (AM), neutrophils and SARS-CoV2, we demonstrated that to trigger a complete EMT expression pattern are necessary the induction of NETosis by SARS-CoV2 and the secretion of AM factors (TGF-ß, IL8 and IL1ß). All our results highlight the possible mechanism that can induce lung fibrosis after SARS-CoV2 infection.


Тема - темы
COVID-19/physiopathology , Epithelial-Mesenchymal Transition , Extracellular Traps/metabolism , Neutrophils/metabolism , Adult , Biopsy , Bronchoalveolar Lavage Fluid/cytology , COVID-19/complications , COVID-19/immunology , Cell Line , Epithelial Cells/pathology , Humans , Lung/pathology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism
4.
Cells ; 10(5)2021 05 14.
Статья в английский | MEDLINE | ID: covidwho-1234672

Реферат

To date, more than 100 million people worldwide have recovered from COVID-19. Unfortunately, although the virus is eradicated in such patients, fibrotic irreversible interstitial lung disease (pulmonary fibrosis, PF) is clinically evident. Given the vast numbers of individuals affected, it is urgent to design a strategy to prevent a second wave of late mortality associated with COVID-19 PF as a long-term consequence of such a devastating pandemic. Available antifibrotic therapies, namely nintedanib and pirfenidone, might have a role in attenuating profibrotic pathways in SARS-CoV-2 infection but are not economically sustainable by national health systems and have critical adverse effects. It is our opinion that the mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 fibrotic lungs through its anti-inflammatory and antifibrotic factors.


Тема - темы
Biological Factors/pharmacology , COVID-19/complications , Mesenchymal Stem Cells/metabolism , Pulmonary Fibrosis/drug therapy , Biological Factors/metabolism , Biological Factors/therapeutic use , COVID-19/economics , COVID-19/virology , Humans , Indoles/administration & dosage , Indoles/adverse effects , Indoles/economics , Lung/drug effects , Lung/pathology , Lung/virology , Pulmonary Fibrosis/economics , Pulmonary Fibrosis/virology , Pyridones/administration & dosage , Pyridones/adverse effects , Pyridones/economics , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
5.
BMC Pulm Med ; 20(1): 301, 2020 Nov 16.
Статья в английский | MEDLINE | ID: covidwho-925848

Реферат

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly reached pandemic proportions. Given that the main target of SARS-CoV-2 are lungs leading to severe pneumonia with hyperactivation of the inflammatory cascade, we conducted a prospective study to assess alveolar inflammatory status in patients with moderate to severe COVID-19. METHODS: Diagnostic bronchoalveolar lavage (BAL) was performed in 33 adult patients with SARS-CoV-2 infection by real-time PCR on nasopharyngeal swab admitted to the Intensive care unit (ICU) (n = 28) and to the Intermediate Medicine Ward (IMW) (n = 5). We analyze the differential cell count, ultrastructure of cells and Interleukin (IL)6, 8 and 10 levels. RESULTS: ICU patients showed a marked increase in neutrophils (1.24 × 105 ml- 1, 0.85-2.07), lower lymphocyte (0.97 × 105 ml- 1, 0.024-0.34) and macrophages fractions (0.43 × 105 ml- 1, 0.34-1.62) compared to IMW patients (0.095 × 105 ml- 1, 0.05-0.73; 0.47 × 105 ml- 1, 0.28-1.01 and 2.14 × 105 ml- 1, 1.17-3.01, respectively) (p < 0.01). Study of ICU patients BAL by electron transmission microscopy showed viral particles inside mononuclear cells confirmed by immunostaining with anti-viral capsid and spike antibodies. IL6 and IL8 were significantly higher in ICU patients than in IMW (IL6 p < 0.01, IL8 p < 0.0001), and also in patients who did not survive (IL6 p < 0.05, IL8 p = 0.05 vs. survivors). IL10 did not show a significant variation between groups. Dividing patients by treatment received, lower BAL concentrations of IL6 were found in patients treated with steroids as compared to those treated with tocilizumab (p < 0.1) or antivirals (p < 0.05). CONCLUSIONS: Alveolitis, associated with COVID-19, is mainly sustained by innate effectors which showed features of extensive activation. The burden of pro-inflammatory cytokines IL6 and IL8 in the broncho-alveolar environment is associated with clinical outcome.


Тема - темы
Bronchoalveolar Lavage Fluid/immunology , Coronavirus Infections/immunology , Inflammation/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocytes/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Drug Combinations , Female , Humans , Hydroxychloroquine/therapeutic use , Intensive Care Units , Interleukin-10/immunology , Italy , Leukocytes, Mononuclear/virology , Lopinavir/therapeutic use , Lung/cytology , Lung/virology , Lymphocytes/immunology , Male , Microscopy, Electron, Transmission , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial/methods , Ritonavir/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , Virion/metabolism , Virion/ultrastructure , COVID-19 Drug Treatment
6.
researchsquare; 2020.
Препринт в английский | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-49968.v5

Реферат

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly reached pandemic proportions. Given that the main target of SARS-CoV-2 are lungs leading to severe pneumonia with hyperactivation of the inflammatory cascade, we conducted a prospective study to assess alveolar inflammatory status in patients with moderate to severe COVID-19. Methods: : Diagnostic bronchoalveolar lavage (BAL) was performed in 33 adult patients with SARS-CoV-2 infection by real-time PCR on nasopharyngeal swab admitted to the Intensive care unit (ICU) (n=28) and to the Intermediate Medicine Ward (IMW) (n=5). We analyze the differential cell count, ultrastructure of cells and Interleukin(IL)6, 8 and 10 levels. Results: : ICU patients showed a marked increase in neutrophils (1.24 x 10 5 ml -1 , 0.85-2.07), lower lymphocyte (0.97 x 10 5 ml -1 , 0.024-0.34) and macrophages fractions (0.43 x 10 5 ml -1 , 0.34-1.62) compared to IMW patients (0.095 x 10 5 ml -1 , 0.05-0.73; 0.47 x 10 5 ml -1 , 0.28-1.01 and 2.14 x 10 5 ml -1 , 1.17-3.01, respectively) (p<0.01). Study of ICU patients BAL by electron transmission microscopy showed viral particles inside mononuclear cells confirmed by immunostaining with anti-viral capsid and spike antibodies. IL6 and IL8 were significantly higher in ICU patients than in IMW (IL6 p<0.01, IL8 p<0.0001), and also in patients who did not survive (IL6 p < 0.05, IL8 p = 0.05 vs. survivors). IL10 did not show a significant variation between groups. Dividing patients by treatment received, lower BAL concentrations of IL6 were found in patients treated with steroids as compared to those treated with tocilizumab (p<0.1) or antivirals (p<0.05). Conclusions: : Alveolitis, associated with COVID-19, is mainly sustained by innate effectors which showed features of extensive activation. The burden of pro-inflammatory cytokines IL6 and IL8 in the broncho-alveolar environment is associated with clinical outcome.


Тема - темы
Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Pulmonary Fibrosis
7.
Eur Respir J ; 56(4)2020 10.
Статья в английский | MEDLINE | ID: covidwho-876309
8.
Cells ; 9(4)2020 04 09.
Статья в английский | MEDLINE | ID: covidwho-47870

Реферат

From the end of 2019, the world population has been faced the spread of the novel coronavirus SARS-CoV-2 responsible for COVID-19 infection. In approximately 14% of the patients affected by the novel coronavirus, the infection progresses with the development of pneumonia that requires mechanical ventilation. At the moment, there is no specific antiviral treatment recommended for the COVID-19 pandemic and the therapeutic strategies to deal with the infection are only supportive. In our opinion, mesenchymal stem cell secretome could offer a new therapeutic approach in treating COVID-19 pneumonia, due to the broad pharmacological effects it shows, including anti-inflammatory, immunomodulatory, regenerative, pro-angiogenic and anti-fibrotic properties.


Тема - темы
Coronavirus Infections/therapy , Mesenchymal Stem Cells/metabolism , Metabolome , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/physiopathology , Drug Development , Pandemics , Pneumonia, Viral/physiopathology
Критерии поиска